Part Number Hot Search : 
CS43L43 MC14468P MFWABSS GS1085CM RQJ030 856331 H11B255 FEPB16BT
Product Description
Full Text Search
 

To Download LT1078M Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 lt1078/lt1079 micropower, dual and quad, single supply, precision op amps features n available in 8-pin so package n 50 m a max supply current per amplifier n 70 m v max offset voltage n 180 m a max offset voltage in 8-pin so n 250pa max offset current n 0.6 m v p-p , 0.1hz to 10hz voltage noise n 3pa p-p , 0.1hz to 10hz current noise n 0.4 m v/ c offset voltage drift n 200khz gain bandwidth product n 0.07v/ m s slew rate n single supply operation input voltage range includes ground output swings to ground while sinking current no pull-down resistors needed n output sources and sinks 5ma load current descriptio n u the lt ? 1078 is a micropower dual op amp in 8-pin packages including the small outline surface mount pack- age. the lt1079 is a micropower quad op amp offered in the standard 14-pin packages. both devices are optimized for single supply operation at 5v. 15v specifications are also provided. micropower performance of competing devices is achieved at the expense of seriously degrading precision, noise, speed and output drive specifications. the design effort of the lt1078/lt1079 was concentrated on reducing sup- ply current without sacrificing other parameters. the offset voltage achieved is the lowest on any dual or quad nonchopper stabilized op ampmicropower or other- wise. offset current, voltage and current noise, slew rate and gain bandwidth product are all two to ten times better than on previous micropower op amps. the 1/f corner of the voltage noise spectrum is at 0.7hz, at least three times lower than on any monolithic op amp. this results in low frequency (0.1hz to 10hz) noise performance which can only be found on devices with an order of magnitude higher supply current. both the lt1078 and lt1079 can be operated from a single supply (as low as one lithium cell or two ni-cad batteries). the input range goes below ground. the all- npn output stage swings to within a few millivolts of ground while sinking currentno power consuming pull down resistors are needed. n battery or solar-powered systems portable instrumentation remote sensor amplifier satellite circuitry n micropower sample-and-hold n thermocouple amplifier n micropower filters applicatio n s u distribution of input offset voltage (lt1078 and lt1079 in h, j, n packages) input offset voltage ( v) 120 percent of units 0 80 1078/79 ?ta02 80 40 40 16 14 12 10 8 6 4 2 0 120 v s = 5v, 0v t a = 25 c single battery, micropower, gain = 100, instrumentation amplifier + + inverting input 1m 2 3 1 6 5 7 a 1/2 lt1078 10.1k 1m 10.1k noninverting input b 1/2 lt1078 4 8 3v (lithium cell) out typical performance input offset voltage = 40 v input offset current = 0.2na total power dissipation = 240 w common mode rejection = 110db (amplifier limited) gain bandwidth product = 200khz output noise = 85 v p-p 0.1hz to 10hz = 300 v rms over full bandwidth input range = 0.03v to 1.8v output range = 0.03v to 2.3v (0.3mv v in + ?v in 23mv) outputs sink current?o pull-down resistors are needed lt1078/79 ?ta01 + , ltc and lt are registered trademarks of linear technology corporation.
2 lt1078/lt1079 absolute m axi m u m ratings w ww u operating temperature range lt1078am/LT1078M/ lt1079am/lt1079m ............................ C 55 c to 125 c lt1078i/lt1079i .................................... C 40 c to 85 c lt1078ac/lt1078c/lt1078s8/ lt1079ac/lt1079c .................................... 0 c to 70 c lead temperature (soldering, 10 sec).................. 300 c supply voltage ...................................................... 22v differential input voltage ....................................... 30v input voltage ............... equal to positive supply voltage ............ 5v below negative supply voltage output short-circuit duration .......................... indefinite storage temperature range all grades ......................................... C 65 c to 150 c package/order i n for m atio n w u u order part number order part number 1 2 3 4 8 7 6 5 top view in a out a v + out b +in a v ? +in b in b s8 package 8-lead plastic so b a note: this pin configuration differs from the 8-lead dip pin locations. instead, it follows the industry standard lt1013ds8 so package configuration. for similar performance with traditional dip pinout, see the lt2078 order part number order part number lt1078ach LT1078Mh lt1078acn8 lt1078amj8 lt1078cn8 lt1078in8 LT1078Mj8 lt1078is8 lt1078s8 order part number part marking 1078 t jmax = 150 c, q ja = 100 c/ w (j8) t jmax = 100 c, q ja = 130 c/ w (n8) t jmax = 150 c, q ja = 150 c/ w, q jc = 45 c/ w top view out b v + out a ?n a ?n b +in b +in a v (case) 8 7 6 5 3 2 1 4 h package 8-lead to-5 metal can ab 1 2 3 4 8 7 6 5 top view v + out b in b +in b out a in a +in a v n8 package 8-lead pdip j8 package 8-lead ceramic dip a b lt1079acn lt1079cn lt1079in lt1079mj top view n package 14-lead pdip j package 14-lead ceramic dip 1 2 3 4 5 6 7 14 13 12 11 10 9 8 out a in a +in a v + +in b in b out b out d in d +in d v +in c in c out c a d b c t jmax = 150 c, q ja = 100 c/ w (j) t jmax = 110 c, q ja = 130 c/ w (n) lt1079isw lt1079sw t jmax = 110 c, q ja = 220 c/ w 1 2 3 4 5 6 7 8 top view sw package 16-lead plastic so wide 16 15 14 13 12 11 10 9 out a in a +in a v + +in b in b out b nc out d in d +in d v? +in c in c out c nc a d b c note: for 14-pin narrow package see the lt2079 t jmax = 110 c, q ja = 150 c/ w
3 lt1078/lt1079 electrical characteristics v s = 5v, 0v, v cm = 0.1v, v o = 1.4v, t a = 25 c, unless otherwise noted. lt1078c/lt1079c lt1078i/lt1079i lt1078ac/lt1079ac LT1078M/lt1079m lt1078am/lt1079am lt1078s8/lt1079sw symbol parameter conditions (note 1) min typ max min typ max units v os input offset voltage lt1078 30 70 40 120 m v lt1078is8/lt1078s8 60 180 m v lt1079 35 100 40 150 m v lt1079isw/lt1079sw 60 300 m v d v os long term input offset 0.4 0.5 m v/mo d time voltage stability i os input offset current 0.05 0.25 0.05 0.35 na i b input bias current 6 8 6 10 na e n input noise voltage 0.1hz to 10hz (note 2) 0.6 1.2 0.6 m v p-p input noise voltage density f o = 10hz (note 2) 29 45 29 nv ? hz f o = 1000hz (note 2) 28 37 28 nv ? hz i n input noise current 0.1hz to 10hz (note 2) 2.3 4.0 2.3 pa p-p input noise current density f o = 10hz (note 2) 0.06 0.10 0.06 pa ? hz f o = 1000hz 0.02 0.02 pa ? hz input resistance (note 3) differential mode 400 800 300 800 m w common mode 6 6 g w input voltage range 3.5 3.8 3.5 3.8 v 0 C 0.3 0 C 0.3 v cmrr common mode rejection ratio v cm = 0v to 3.5v 97 110 94 108 db psrr power supply rejection ratio v s = 2.3v to 12v 102 114 100 114 db a vol large-signal voltage gain v o = 0.03v to 4v, no load 200 1000 150 1000 v/mv v o = 0.03v to 3.5v, r l = 50k 150 600 120 600 v/mv maximum output voltage output low, no load 3.5 6 3.5 6 mv swing output low, 2k to gnd 0.55 1.0 0.55 1.0 mv output low, i sink = 100 m a 95 130 95 130 mv output high, no load 4.2 4.4 4.2 4.4 v output high, 2k to gnd 3.5 3.9 3.5 3.9 v sr slew rate a v = 1, v s = 2.5v 0.04 0.07 0.04 0.07 v/ m s gbw gain bandwidth product f o 20khz 200 200 khz i s supply current per amplifier 38 50 39 55 m a channel separation d v in = 3v, r l = 10k 130 130 db minimum supply voltage (note 4) 2.2 2.3 2.2 2.3 v
4 lt1078/lt1079 electrical characteristics v s = 5v, 0v, v cm = 0.1v, v o = 1.4v, C 40 c t a 85 c for i grades, C 55 c t a 125 c for am/m grades, unless otherwise noted. lt1078i/lt1079i lt1078am/lt1079am LT1078M/lt1079m symbol parameter conditions min typ max min typ max units v os input offset voltage lt1078 l 70 250 95 370 m v lt1078is8/lt1079 l 80 280 100 400 m v lt1079isw l 100 560 m v d v os input offset voltage drift l 0.4 1.8 0.5 2.5 m v/ c d t (note 5) lt1078is8 l 0.6 3.5 m v/ c lt1079isw l 0.7 4.0 m v/ c i os input offset current l 0.07 0.50 0.07 0.70 na lt1078i/lt1079i l 0.1 1.0 na i b input bias current l 710 712 na cmrr common mode rejection ratio v cm = 0.05v to 3.2v l 92 106 88 104 db psrr power supply rejection ratio v s = 3.1v to 12v l 98 110 94 110 db a vol large-signal voltage gain v o = 0.05v to 4v, no load l 110 600 80 600 v/mv v o = 0.05v to 3.5v, r l = 50k l 80 400 60 400 v/mv maximum output voltage output low, no load l 4.5 8 4.5 8 mv swing output low, i sink = 100 m a l 125 170 125 170 mv output high, no load l 3.9 4.2 3.9 4.2 v output high, 2k to gnd l 3.0 3.7 3.0 3.7 v i s supply current per amplifier l 43 60 45 70 m a lt1078c/lt1079c lt1078ac/lt1079ac lt1078s8/lt1079sw symbol parameter conditions min typ max min typ max units v os input offset voltage lt1078 l 50 150 60 240 m v lt1079 l 60 180 70 270 m v lt1078s8 l 85 350 m v lt1079sw l 90 480 m v d v os input offset voltage drift l 0.4 1.8 0.5 2.5 m v/ c d t (note 5) lt1078s8 l 0.6 3.5 m v/ c lt1079sw l 0.7 4.0 m v/ c i os input offset current l 0.06 0.35 0.06 0.50 na i b input bias current l 69 611na cmrr common mode rejection ratio v cm = 0v to 3.4v l 94 108 90 106 db psrr power supply rejection ratio v s = 2.6v to 12v l 100 112 97 112 db a vol large-signal voltage gain v o = 0.05v to 4v, no load l 150 750 110 750 v/mv v o = 0.05v to 3.5v, r l = 50k l 110 500 80 500 v/mv maximum output voltage output low, no load l 4.0 7 4.0 7 mv swing output low, i sink = 100 m a l 105 150 105 150 mv output high, no load l 4.1 4.3 4.1 4.3 v output high, 2k to gnd l 3.3 3.8 3.3 3.8 v i s supply current per amplifier l 40 55 42 63 m a v s = 5v, 0v, v cm = 0.1v, v o = 1.4v, 0 c t a 70 c, unless otherwise noted.
5 lt1078/lt1079 electrical characteristics v s = 15v, t a = 25 c, unless otherwise noted. lt1078c/lt1079c lt1078i/lt1079i lt1078ac/lt1079ac LT1078M/lt1079m lt1078am/lt1079am lt1078s8/lt1079sw symbol parameter conditions min typ max min typ max units v os input offset voltage (including lt1078is8/lt1078s8) 50 250 70 350 m v lt1079isw/lt1079sw 80 500 m v i os input offset current 0.05 0.25 0.05 0.35 na i b input bias current 6 8 6 10 na input voltage range 13.5 13.8 13.5 13.8 v C15.0 C15.3 C15.0 C15.3 v cmrr common mode rejection ratio v cm = 13.5v, C15v 100 114 97 114 db psrr power supply rejection ratio v s = 5v, 0v to 18v 102 114 100 114 db a vol large-signal voltage gain v o = 10v, r l = 50k 1000 5000 1000 5000 v/mv v o = 10v, r l = 2k 400 1100 300 1100 v/mv v out maximum output voltage r l = 50k 13.0 14.0 13.0 14.0 v swing r l = 2k 11.0 13.2 11.0 13.2 v sr slew rate 0.06 0.10 0.06 0.10 v/ m s i s supply current per amplifier 46 65 47 75 m a v s = 15v, C 40 c t a 85 c for i grades, C 55 c t a 125 c for am/m grades unless otherwise noted. lt1078i/lt1079i lt1078am/lt1079am LT1078M/lt1079m symbol parameter conditions min typ max min typ max units v os input offset voltage (including lt1078is8) l 90 430 120 600 m v lt1079isw l 130 825 m v d v os input offset voltage drift l 0.5 1.8 0.6 2.5 m v/ c d t (note 5) lt1078is8 l 0.7 3.8 m v/ c lt1079isw l 0.8 5.0 m v/ c i os input offset current l 0.07 0.50 0.07 0.70 na lt1078i/lt1079i l 0.1 1.0 na i b input bias current l 710 712 na a vol large-signal voltage gain v o = 10v, r l = 5k l 200 700 150 700 v/mv cmrr common mode rejection ratio v cm = 13v, C14.9v l 94 110 90 110 db psrr power supply rejection ratio v s = 5v, 0v to 18v l 98 110 94 110 db maximum output voltage swing r l = 5k l 11.0 13.5 11.0 13.5 v i s supply current per amplifier l 52 80 54 95 m a
6 lt1078/lt1079 electrical characteristics v s = 15v, 0 c t a 70 c, unless otherwise noted. lt1078c/lt1079c lt1078ac/lt1079ac lt1078s8/lt1079sw symbol parameter conditions min typ max min typ max units v os input offset voltage l 70 330 90 460 m v lt1078s8 l 100 540 m v lt1079sw l 115 750 m v d v os input offset voltage drift l 0.5 1.8 0.6 2.5 m v/ c d t (note 5) lt1078s8 l 0.7 3.8 m v/ c lt1079sw l 0.8 5.0 m v/ c i os input offset current l 0.06 0.35 0.06 0.50 na i b input bias current l 69 611 na a vol large-signal voltage gain v o = 10v, r l = 5k l 300 1200 250 1200 v/mv cmrr common mode rejection ratio v cm = 13v, C15v l 97 112 94 112 db psrr power supply rejection ratio v s = 5v, 0v to 18v l 100 112 97 112 db maximum output voltage swing r l = 5k l 11.0 13.6 11.0 13.6 v i s supply current per amplifier l 49 73 50 85 m a the l denotes specifications which apply over the full operating temperature range. note 1: typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers, i.e., out of 100 lt1079s (or 100 lt1078s) typically 240 op amps (or 120) will be better than the indicated specification. note 2: this parameter is tested on a sample basis only. all noise parameters are tested with v s = 2.5v, v o = 0v. note 3: this parameter is guaranteed by design and is not tested. note 4: power supply rejection ratio is measured at the minimum supply voltage. the op amps actually work at 1.8v supply but with a typical offset skew of C 300 m v. note 5: this parameter is not 100% tested.
7 lt1078/lt1079 time (sec) 0 noise voltage (0.4 v/div) 8 lt1078/79 ?tpc04 2 4 6 10 channel a channel b t a = 25 c v s = 2.5v typical perfor m a n ce characteristics u w input bias current vs common mode voltage input bias and offset currents vs temperature supply current vs temperature temperature ( c) ?0 supply current per amplifier ( a) 55 50 45 40 35 30 25 25 75 lt1078/79 ?tpc01 ?5 0 50 100 125 v s = 15v v s = 5v, 0v temperature ( c) ?0 bias current (na) offset current (pa) 100 50 0 ? ? ? 0 50 75 lt1078/79 ?tpc02 ?5 25 100 125 i os i b v s = 5v, 0v to 15v common mode voltage (v) ? input bias current (na) 0 ? ? ? ? ?0 ?2 0123 lt1078/79 ?tpc03 4 t a = 125 c t a = 55 c v s = 5v, 0v t a = 25 c 0.1hz to 10hz noise 0.01hz to 10hz noise noise spectrum time (sec) 0 noise voltage (0.4 v/div) 80 lt1078/79 ?tpc05 20 40 60 100 channel b t a = 25 c v s = 2.5v channel a 0.4 v frequency (hz) 0.1 1 100 10 voltage noise density (nv/ ? hz) current noise density (fa/ ? hz) 100 30 1000 300 10 1000 lt1078/79 ?tpc06 current noise voltage noise 1/f corner 0.7hz t a = 25 c v s = 2.5v (at v s = 15v voltage noise is 4% less current noise is unchanged) 10hz voltage noise distribution distribution of offset voltage drift with temperature (in all packages except surface mount) long term stability of two representative units (lt1078) voltage noise density (nv/ ? hz) 25 lt1078/79 ?tpc07 30 35 40 percent of units 35 30 25 20 15 10 5 0 t a = 25 c v s = 2.5v 329 op amps tested from three runs 106 lt1078's 45 lt1079's time (months) 0 offset voltage change ( v) 1234 lt078/79 ?tpc09 5 15 10 5 0 ? 10 ?5 t a = 25 c, v s = 5v, 0v v cm = 0.1v 1a 2b 1b 2a offset voltage drift with temperature ( v/ c) percent of units 25 20 15 10 5 0 lt1078/79 ?tpc08 2 ? 0 1 2 111 1 3 5 7 44 89 120 109 85 47 4 3 v s = 5v, 0v v cm = 0.1v 120 lt1078's 70 lt1079's 520 op amps
8 lt1078/lt1079 typical perfor m a n ce characteristics u w load resistance to ground ( ) 100 100k voltage gain (v/v) 1m 10m 10k 100k 1k 1m lt1078/79 ?tpc18 25 c ?5 c 125 c 25 c ?5 c 125 c v s = 15v v s = 5v, 0v minimum supply voltage positive supply voltage (v) 0 input offset voltage ( v) 100 0 100 200 300 400 500 lt1078/79 ?tpc16 1 23 v = 0v 0.1v v cm 0.4v 125 c ?5 c 0 c 25 c 70 c nonfunctional voltage gain vs frequency frequency (hz) 0.01 voltage gain (db) 1m lt1078/79 ?tpc10 1 100 10k 140 120 100 80 60 40 20 0 ?0 0.1 10 1k 100k v s = 15v v s = 5v, 0v t a = 25 c slew rate, gain bandwidth product and phase margin vs temperature temperature ( c) ?0 gain bandwidth product (khz) slew rate (v/ s) phase margin (deg) 0.12 0.10 0.08 0.06 0.04 240 220 200 180 160 80 70 60 50 40 0 50 75 lt1078/79 ?tpc13 ?5 25 100 125 slew = 15v gbw = 15v gbw = 5v, 0v slew = 5v, 0v f m = 15v f m = 5v, 0v f o = 20khz large-signal transient response v s = 5v, 0v 1v/div a v = 1, no load 50 m s/div input pulse 0v to 3.8v lt1078/79 ? tpc27 0v warm-up drift time after power-on (minutes) 0 change in offset voltage ( v) lt1078/79 ?tpc17 1 2 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 3 t a = 25 c v s = 15v warm up drift at v s = 5v, 0v is immeasurably low lt1079 lt1078 large-signal transient response v s = 15v 5v/div a v = 1 100 m s/div no load lt1078/79 ? tpc28 0v voltage gain vs load resistance capacitive load handling capacitive load (pf) 10 overshoot (%) 120 100 80 60 40 20 0 10000 lt1078/79 ?tpc12 1000 100 t a = 25 c v s = 5v, 0v a v = 1 a v = 10 a v = 5 gain, phase vs frequency frequency (khz) 30 30 20 10 0 ?0 100 300 ltc1078/79 tpc11 voltage gain (db) 100 120 140 160 180 200 phase shift (deg) 10 1000 phase margin 66 phase margin 54 5v, 0v 15v 15v 5v, 0v t a = 25 c c l = 20pf gain
9 lt1078/lt1079 typical perfor m a n ce characteristics u w temperature ( c) ?0 common mode range (v) 25 0 25 50 75 lt1078/79 ?tpc22 125 v + v + ?1 v + ?2 v + 1 v v ?1 100 v + = 2.5v to 18v v = 0v to 18v output saturation vs temperature vs sink current temperature ( c) ?0 saturation voltage (mv) 1000 100 10 1 25 125 lt1078/79 ?tpc19 0 25 50 100 75 i sink = 2ma i sink = 1ma i sink = 100 a i sink = 1 a no load r l = 5k to gnd i sink = 10 a v s = 5v, 0v common mode range vs temperature closed loop output impedance frequency (hz) output impedance ( ) 1k 100 10 1 0.1 lt1078/79 ?tpc24 10 100 1k 10k 100k a v = 100 a v = 10 a v = 1 output voltage swing vs load current sourcing or sinking load current (ma) 0.01 output voltage swing (v) v + v + ?1 v + ?2 v + 2 v + 1 v 10 lt1078/79 ?tpc20 0.1 1 125 c 25 c ?5 c 125 c ?5 c 25 c undistorted output swing vs frequency frequency (khz) 0.01 peak-to-peak output swing, v s = 15v (v) peak-to-peak output swing, v s = 5v, 0v (v) 30 20 10 0 5 4 3 2 1 0 100 lt1078/79 ?tpc23 110 v s = 5v, 0v r l 3 100k v s = 15v r l 3 100k v s = 15v r l = 30k v s = 5v, 0v r l 3 1k t a = 25 c load r l , to gnd distribution of input offset voltage (lt1078 in 8-pin so package) channel separation vs frequency power supply rejection ratio vs frequency common mode rejection ratio vs frequency frequency (hz) 10 common mode rejection ratio (db) 100 1k 10k 100k lt1078/79 ?tpc25 1m t a = 25 c 120 100 80 60 40 20 0 v s = 15v v s = 5v, 0v frequency (hz) 0.1 power supply rejection ratio (db) 120 100 80 60 40 20 0 100 10k lt1078/79 ?tpc26 110 1k 100k 1m t a = 25 c v s = 2.5v + 1v p-p sine wave positive supply negative supply frequency (hz) 1 1k 100k lt1078/79 ?tpc27 10 100 10k 1m channel separation (db) 140 120 100 80 60 40 20 0 t a = 25 c v s = 2.5v v in = 3v p-p to 2khz r l = 10k input offset voltage ( v) 160 percent of units 160 lt1078/79 ?tpc21 ?0 0 80 16 14 12 10 8 6 4 2 0 120 ?0 40 120 t a = 25 c v s = 5v, 0v
10 lt1078/lt1079 typical perfor m a n ce characteristics u w small-signal transient response v s = 2.5v 20mv/div a v = 1 10 m s/div c l = 15pf lt1078/79 ? tpc25 0v small-signal transient response v s = 5v, 0v 20mv/div a v = 1 10 m s/div c l = 15pf input 50mv to 150mv lt1078/79 ? tpc24 0.1v small-signal transient response v s = 15v 20mv/div a v = 1 10 m s/div c l = 15pf lt1078/79 ? tpc26 0v applicatio n s i n for m atio n wu u u the lt1078/lt1079 devices are fully specified with v + = 5v, v C = 0v, v cm = 0.1v. this set of operating conditions appears to be the most representative for battery-powered micropower circuits. offset voltage is internally trimmed to a minimum value at these supply voltages. when 9v or 3v batteries or 2.5v dual supplies are used, bias and offset current changes will be minimal. offset voltage changes will be just a few microvolts as given by the psrr and cmrr specifications. for example, if psrr = 114db (= 2 m v/v), at 9v the offset voltage change will be 8 m v. similarly, v s = 2.5v, v cm = 0v is equivalent to a common mode voltage change of 2.4v or a v os change of 7 m v if cmrr = 110db (3 m v/v). a full set of specifications is also provided at 15v supply voltages for comparison with other devices and for com- pleteness. single supply operation the lt1078/lt1079 are fully specified for single supply operation, i.e., when the negative supply is 0v. input common mode range goes below ground and the output swings within a few millivolts of ground while sinking current. all competing micropower op amps either cannot swing to within 600mv of ground (op-20, op-220, op-420) or need a pull-down resistor connected to the output to swing to ground (op-90, op-290, op-490, ha5141/42/ 44). this
11 lt1078/lt1079 applicatio n s i n for m atio n wu u u difference is critical because in many applications these competing devices cannot be operated as micropower op amps and swing to ground simultaneously. as an example, consider the instrumentation amplifier shown on the front page. when the common mode signal is low and the output is high, amplifier a has to sink current. when the common mode signal is high and the output low, amplifier b has to sink current. the competing devices require a 12k pull-down resistor at the output of amplifier a and a 15k at the output of b to handle the specified signals. (the lt1078 does not need pull-down resistors.) when the common mode input is high and the output is high these pull-down resistors draw 300 m a (150 m a each), which is excessive for micropower applications. the instrumentation amplifier is by no means the only application requiring current sinking capability. in seven of the nine single supply applications shown in this data sheet the op amps have to be able to sink current. in two of the applications the first amplifier has to sink only the 6na input bias current of the second op amp. the compet- ing devices, however, cannot even sink 6na without a pull- down resistor since the output of the lt1078/lt1079 cannot go exactly to ground, but can only approach ground to within a few millivolts, care should be exercised to ensure that the output is not saturated. for example, a 1mv input signal will cause the amplifier to set up in its linear region in the gain 100 configuration shown in figure 1a, but is not single supply operation can also create difficulties at the input. the driving signal can fall below 0v inadvertently or on a transient basis. if the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the lm124, lm158, op-20, op-21, op-220, op-221, op-420 (1 and 2), op-90/290/490 (2 only): 1. when the input is more than a diode drop below ground, unlimited current will flow from the substrate (v C terminal) to the input. this can destroy the unit. on the lt1078/lt1079, resistors in series with the input protect the devices even when the input is 5v below ground. 2. when the input is more than 400mv below ground (at 25 c), the input stage saturates and phase reversal occurs at the output. this can cause lockup in servo systems. due to a unique phase reversal protection cir- cuitry, the lt1078/lt1079 output does not reverse, as illustrated in figure 2, even when the inputs are at C 1v. enough to make the amplifier function properly in the voltage follower mode, figure 1b. figure 1a. gain 100 amplifier + 5v 1mv r 99r 100mv lt1078/79 ?f01a + 5v 1mv output saturated ? 3.5mv lt1078/79 ?f01b figure 1b. voltage follower figure 2. voltage follower with input exceeding the negative common mode range (v s = 5v, 0v) 2v 0v 6v p-p input 1ms/div C1v to 5v lt1078/79 ? f02a 1ms/div lt1078/lt1079 no phase reversal lt1078/79 ? f02c 2v 0v 4v 1ms/div op-90 exhibits output phase reversal lt1078/79 ? f02b 2v 0v 4v 4v
12 lt1078/lt1079 applicatio n s i n for m atio n wu u u matching specifications in many applications the performance of a system de- pends on the matching between two op amps, rather than the individual characteristics of the two devices. the two and three op amp instrumentation amplifier configura- tions shown in this data sheet are examples. matching characteristics are not 100% tested on the lt1078/lt1079. some specifications are guaranteed by definition. for example, 70 m v maximum offset voltage implies that mis- match cannot be more than 140 m v. 97db (= 14 m v/v) cmrr means that worst-case cmrr match is 91db (= 28 m v/v). however, table 1 can be used to estimate the expected matching performance at v s = 5v, 0v between the two sides of the lt1078, and between amplifiers a and d, and between amplifiers b and c of the lt1079. table 1 lt1078ac/lt1079ac/lt1078am/lt1079am lt1078c/lt1079c/LT1078M/lt1079m parameter 50% yield 98% yield 50% yield 98% yield units v os match, d v os lt1078 30 110 50 190 m v lt1079 40 150 50 250 m v temperature coefficient d v os 0.5 1.2 0.6 1.8 m v/ c average noninverting i b 68610 na match of noninverting i b 0.12 0.4 0.15 0.5 na cmrr match 120 100 117 97 db psrr match 117 105 117 102 db comparator applications the single supply operation of the lt1078/lt1079 and its ability to swing close to ground while sinking current lends itself to use as a precision comparator with ttl compatible output. 4 v s = 5v, 0v 200 m s/div lt2078/79 ? f03 2 0 0 C100 input (mv) output (v) figure 3. comparator rise response time to 10mv, 5mv, 2mv overdrives v s = 5v, 0v 200 m s/div lt2078/79 ? f04 0 100 0 input (mv) output (v) 4 2 figure 4. comparator fall response time to 10mv, 5mv, 2mv overdrives
13 lt1078/lt1079 typical applicatio n s u micropower, 10ppm/ c, 5v reference gain of 10 difference amplifier + + 2m 220k 120k 3 2 1 8 4 1/2 lt1078 9v 5.000v out 1m 6 5 7 lt1034bc-1.2 510k 1m 5.000v out ?v 510k 1% 20k 160k 1% 1/2 lt1078 supply current = 9v battery = 115 a 9v battery = 85 a output noise = 36 v p-p , 0.1hz to 10hz the lt1078 contributes less than 3% of the total output noise and drift with time and temperature. the accuracy of the 5v output depends on the matching of the two 1m resistors lt1078/79 ?ta03 + 1m 1m 10m output 0.0035v to 2.4v 1/2 lt1078 bandwidth = 20khz output offset = 0.7mv output noise = 80 v p-p (0.1hz to 10hz) 260 v rms over full bandwidth the usefulness of difference amplifiers is limited by the fact that the input resistance is equal to the source resistance. the picoampere offset current and low current noise of the lt1078 allows the use of 1m source resistors without degradation in performance. in addition, with megohm resistors micropower operation can be maintained lt1078/79 ?ta04 ?n +in 10m 3v picoampere input current, triple op amp instrumentation amplifier with bias current cancellation + 9 10 8 1/4 lt1079 + + + r2 1m r2 1m 1/4 lt1079 1/4 lt1079 1/4 lt1079 3 2 1 r1 1m r1 1m r g 200k 6 5 7 12 13 14 r3 9.1m r3 9.1m 9v 4 11 2r 20m output 4mv to 8.2v r 10m 2r 20m ?n +in gain = 1 + () 2r1 r g r3 r2 = 100 for values shown lt`1078/79 ?ta05 input bias current typically < 150pa input resistance = 3r = 30m for values shown negative common mode limit = (i b )(2r) + 20mv ? 140mv gain bandwidth product = 1.8mhz
14 lt1078/lt1079 typical applicatio n s u 85v, C100v common mode range instrumentation amplifier (a v = 10) + + 6 5 7 1/2 lt1078 100k 100k 1/2 lt1078 2 3 1 output 8v to 9v lt1078/79 ?ta06 bandwidth = 2khz output offset = 8mv output noise = 0.8mv p-p (0.1hz to 10hz) = 1.4mv rms over full bandwidth (dominated by resistor noise) 9v ?v 8 4 1m 10m 1m 10m 10m +in ?n input resistance = 10m + 1/2 lt1078 output lt1078/79 ?ta07 v omin = 6mv no distortion to 100hz 3v 2m 2m 1m input 1.8v ?.8v 1.8v 0v half-wave rectifier absolute value circuit (full-wave rectifier) + + 5 6 7 1/2 lt1078 1/2 lt1078 2 3 1 output lt1078/79 ?ta08 v omin = 4mv no distortion to 100hz 5v 8 4 200k 200k input 1n4148 3.5v 3.5v 0v 3.5v programmable gain amplifier (single supply) 13 12 14 out + 1/4 lt1079 9 10 + 1/4 lt1079 6 5 + 1/4 lt1079 2 3 88 3 1 2 7 4 9 a c b + 1/4 lt1079 7 cd4016b 13 5 6 11 4 11 1 3v to 18v 3v to 18v 1m 100k 10k 1.11k in lt1078/79 ?ta09 error due to switch on resistance, leakage current, noise and transients are eliminated cd4016b gain pin 13 pin 5 pin 6 1000 high low low 100 low high low 10 low low high
15 lt1078/lt1079 typical applicatio n s u single supply, micropower, second order lowpass filter with 60hz notch + + 6 5 7 1/2 lt1078 2.64m 0.1% 2.64m 0.1% 1/2 lt1078 3 2 1 output typical offset ? 600 v lt1078/79 ?ta10 5v 8 4 1.35m 0.1% in 2000pf 0.5% 1000pf 0.5% 1000pf 0.5% 0.02 f 5.1m 1% 120k 5% 100pf 0.01 f 27.6k 0.1% 27.6k 0.1% f c = 40hz q > 30 micropower multiplier/divider + 6 5 13 12 1/4 lt1079 4 11 714 + 2 3 1/4 lt1079 1 + 9 10 1/4 lt1079 8 1.5v to 9v 9v 505k 0.1% 505k 0.1% 505k 0.1% 220pf 220pf 30k 5% 30k 5% q1 + 220pf 30k 5% y input (5mv to 50v) x input (5mv to 50v) q2 q4 499k 0.5% 10k gain z input (5mv to 50v) output (5mv to 8v) 1/4 lt1079 q1,q2, q3, q4 = mat-04 typical linearity = 0.01% of full-scale output q3 output = , positive inputs only (x)(y) (z) negative supply current = 165 a + x + y+ z + out 500k positive supply current = 165 a + bandwidth (< 3v p-p signal): x and y inputs = 10khz z input = 4khz out 500k lt1078/79 ?ta11
16 lt1078/lt1079 typical applicatio n s u micropower dead zone generator + 2 3 1 1/4 lt1079 510k 1m** 1m** 1m* q1 2n4393 + 6 5 7 1/4 lt1079 + 9 10 8 1/4 lt1079 + 13 12 14 1/4 lt1079 1m** q4 q2 q3 470k 1m* gain 200k 510k 1m** 510k 4 11 9v 1m 1m 680k 1m 1n914 1n914 q5 ?v q6 2n4393 1000pf v set dead zone control input 0.4v to 5v v out lt1078/79 ?ta12 bipolar symmetry is excellent because one device, q2, sets both limits supply current ? 240 a bandwidth = 150khz input * ** 1% film ratio match 0.05% q2, q3, q4, q5 ca3096 transistor array v set v set v out v in
17 lt1078/lt1079 typical applicatio n s u platinum rtd signal conditioner with curvature correction + 3 2 1 8 4 1/2 lt1078 lt1004-1.2 + 6 5 7 1/2 lt1078 13k* 12.3k* 1k** 1k** 1k** r p 1k at 0 c 43.2k** 1.21m* (select at 110 c) 5k 220 c trim 1 f 10k* 50k 5 c trim 1 f 0.02v to 2.2v out = 2 c to 220 c 0.1 c 3v (lithium) r p ** * = rosemount 118mf = trw mar-6 0.1% = 1% metal film lt1078/79 ?ta14 lead-acid low-battery detector with system shutdown + + 2 3 1 6 5 7 8 4 1/2 lt1078 1/2 lt1078 2m 1% 2m 1% 255k 1% 280k 1% 910k 5% lt1004-1.2 lo = battery low (if v s < 10.90v) lo = system shutdown (if v s < 10.05v) battery output lt1078/79 ?ta13 total supply current = 105 a 12v
18 lt1078/lt1079 sche m atic w w si plified 1/2 lt1078, 1/4 lt1079 10k 10k 2.2k 5.6k q5 q6 q11 600 600 q1 q21 q2 q22 q9 c2 175pf 6.2k q7 q28 4 1 q12 q3 q16 q14 q29 q4 q24 8.6k c1 50pf c5 2.5pf q27 v + q10 q17 q8 6.2k q19 q18 q15 q32 1.3k 3.6k q37 q30 1 3 q25 c4 4pf 2.9k 3k q31 c3 40pf q23 q20 1.35k 30 q34 q36 out q26 30 q35 5k q54 1 1 2 150k q33 10k v + q38 5.35k q45 q55 q51 q42 q44 v + v q46 q47 11.5k v + 12.5k q40 q41 q48 9.1k q43 v 700k 700k lt1078/79 ?simplified schem in ? in + q50 q49 j1 q39 q53 q52
19 lt1078/lt1079 information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights. dimensions in inches (millimeters) unless otherwise noted. package descriptio n u j14 0996 0.045 ?0.068 (1.143 ?1.727) 0.100 0.010 (2.540 0.254) 0.014 ?0.026 (0.360 ?0.660) 0.200 (5.080) max 0.015 ?0.060 (0.381 ?1.524) 0.125 (3.175) min 0.300 bsc (0.762 bsc) 0.008 ?0.018 (0.203 ?0.457) 0 ?15 0.385 0.025 (9.779 0.635) 1 234 56 7 0.220 ?0.310 (5.588 ?7.874) 0.785 (19.939) max 0.005 (0.127) min 14 11 8 9 10 13 12 0.025 (0.635) rad typ note: lead dimensions apply to solder dip or tin plate leads. j package 14-lead cerdip (narrow 0.300, hermetic) (ltc dwg # 05-08-1110) j8 0694 0.014 ?0.026 (0.360 ?0.660) 0.200 (5.080) max 0.015 ?0.060 (0.381 ?1.524) 0.125 3.175 min 0.100 0.010 (2.540 0.254) 0.300 bsc (0.762 bsc) 0.008 ?0.018 (0.203 ?0.457) 0 ?15 0.385 0.025 (9.779 0.635) 0.005 (0.127) min 0.405 (10.287) max 0.220 ?0.310 (5.588 ?7.874) 12 3 4 87 65 0.025 (0.635) rad typ 0.045 ?0.068 (1.143 ?1.727) full lead option 0.023 ?0.045 (0.584 ?1.143) half lead option corner leads option (4 plcs) 0.045 ?0.068 (1.143 ?1.727) note: lead dimensions apply to solder dip/plate or tin plate leads. j8 package 8-lead cerdip (narrow 0.300, hermetic) (ltc dwg # 05-08-1110) 0.050 (1.270) max 0.016 ?0.021** (0.406 ?0.533) 0.010 ?0.045* (0.254 ?1.143) seating plane 0.040 (1.016) max 0.165 ?0.185 (4.191 ?4.699) gauge plane reference plane 0.500 ?0.750 (12.700 ?19.050) 0.305 ?0.335 (7.747 ?8.509) 0.335 ?0.370 (8.509 ?9.398) dia 0.200 (5.080) typ 0.027 ?0.045 (0.686 ?1.143) 0.027 ?0.034 (0.686 ?0.864) 0.110 ?0.160 (2.794 ?4.064) insulating standoff 45 typ h8(to-5) 0.200 pcd 0595 lead diameter is uncontrolled between the reference plane and 0.045" below the reference plane for solder dip lead finish, lead diameter is 0.016 ?0.024 (0.406 ?0.610) * ** h package 8-lead to-5 metal can (0.230 pcd) (ltc dwg # 05-08-1321)
20 lt1078/lt1079 10789fd lt/tp 0297 5k rev d ? printed in usa ? linear technology corporation 1994 dimensions in inches (millimeters) unless otherwise noted. package descriptio n u n8 package 8-lead pdip (narrow 0.300) (ltc dwg # 05-08-1510) n8 0695 0.005 (0.127) min 0.100 0.010 (2.540 0.254) 0.065 (1.651) typ 0.045 ?0.065 (1.143 ?1.651) 0.130 0.005 (3.302 0.127) 0.015 (0.380) min 0.018 0.003 (0.457 0.076) 0.125 (3.175) min 12 3 4 87 6 5 0.255 0.015* (6.477 0.381) 0.400* (10.160) max 0.009 ?0.015 (0.229 ?0.381) 0.300 ?0.325 (7.620 ?8.255) 0.325 +0.025 0.015 +0.635 0.381 8.255 () *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed 0.010 inch (0.254mm) n package 14-lead pdip (narrow 0.300) (ltc dwg # 05-08-1510) n14 0695 0.015 (0.380) min 0.125 (3.175) min 0.130 0.005 (3.302 0.127) 0.045 ?0.065 (1.143 ?1.651) 0.065 (1.651) typ 0.018 0.003 (0.457 0.076) 0.100 0.010 (2.540 0.254) 0.005 (0.125) min 0.255 0.015* (6.477 0.381) 0.770* (19.558) max 3 1 2 4 5 6 7 8 9 10 11 12 13 14 0.009 ?0.015 (0.229 ?0.381) 0.300 ?0.325 (7.620 ?8.255) 0.325 +0.025 0.015 +0.635 0.381 8.255 () *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed 0.010 inch (0.254mm) s8 package 8-lead plastic small outline (narrow 0.150) (ltc dwg # 05-08-1610) 1 2 3 4 0.150 ?0.157** (3.810 ?3.988) 8 7 6 5 0.189 ?0.197* (4.801 ?5.004) 0.228 ?0.244 (5.791 ?6.197) 0.016 ?0.050 0.406 ?1.270 0.010 ?0.020 (0.254 ?0.508) 45 0 ?8 typ 0.008 ?0.010 (0.203 ?0.254) so8 0996 0.053 ?0.069 (1.346 ?1.752) 0.014 ?0.019 (0.355 ?0.483) 0.004 ?0.010 (0.101 ?0.254) 0.050 (1.270) typ dimension does not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side dimension does not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side * ** sw package 16-lead plastic small outline (wide 0.300) (ltc dwg # 05-08-1620) s16 (wide) 0396 note 1 0.398 ?0.413* (10.109 ?10.490) 16 15 14 13 12 11 10 9 1 23 4 5 6 78 0.394 ?0.419 (10.007 ?10.643) 0.037 ?0.045 (0.940 ?1.143) 0.004 ?0.012 (0.102 ?0.305) 0.093 ?0.104 (2.362 ?2.642) 0.050 (1.270) typ 0.014 ?0.019 (0.356 ?0.482) typ 0 ?8 typ note 1 0.009 ?0.013 (0.229 ?0.330) 0.016 ?0.050 (0.406 ?1.270) 0.291 ?0.299** (7.391 ?7.595) 45 0.010 ?0.029 (0.254 ?0.737) note: 1. pin 1 ident, notch on top and cavities on the bottom of packages are the manufacturing options. the part may be supplied with or without any of the options dimension does not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side dimension does not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side * ** linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 l (408) 432-1900 fax: (408) 434-0507 l telex: 499-3977 l www.linear-tech.com


▲Up To Search▲   

 
Price & Availability of LT1078M

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X